Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Lancet Infect Dis ; 24(2): 140-149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37918414

ABSTRACT

BACKGROUND: Childhood tuberculosis remains a major cause of morbidity and mortality in part due to missed diagnosis. Diagnostic methods with enhanced sensitivity using easy-to-obtain specimens are needed. We aimed to assess the diagnostic accuracy of the Cepheid Mycobacterium tuberculosis Host Response prototype cartridge (MTB-HR), a candidate test measuring a three-gene transcriptomic signature from fingerstick blood, in children with presumptive tuberculosis disease. METHODS: RaPaed-TB was a prospective diagnostic accuracy study conducted at four sites in African countries (Malawi, Mozambique, South Africa, and Tanzania) and one site in India. Children younger than 15 years with presumptive pulmonary or extrapulmonary tuberculosis were enrolled between Jan 21, 2019, and June 30, 2021. MTB-HR was performed at baseline and at 1 month in all children and was repeated at 3 months and 6 months in children on tuberculosis treatment. Accuracy was compared with tuberculosis status based on standardised microbiological, radiological, and clinical data. FINDINGS: 5313 potentially eligible children were screened, of whom 975 were eligible. 784 children had MTB-HR test results, of whom 639 had a diagnostic classification and were included in the analysis. MTB-HR differentiated children with culture-confirmed tuberculosis from those with unlikely tuberculosis with a sensitivity of 59·8% (95% CI 50·8-68·4). Using any microbiological confirmation (culture, Xpert MTB/RIF Ultra, or both), sensitivity was 41·6% (34·7-48·7), and using a composite clinical reference standard, sensitivity was 29·6% (25·4-34·2). Specificity for all three reference standards was 90·3% (95% CI 85·5-94·0). Performance was similar in different age groups and by malnutrition status. Among children living with HIV, accuracy against the strict reference standard tended to be lower (sensitivity 50·0%, 15·7-84·3) compared with those without HIV (61·0%, 51·6-69·9), although the difference did not reach statistical significance. Combining baseline MTB-HR result with one Ultra result identified 71·2% of children with microbiologically confirmed tuberculosis. INTERPRETATION: MTB-HR showed promising diagnostic accuracy for culture-confirmed tuberculosis in this large, geographically diverse, paediatric cohort and hard-to-diagnose subgroups. FUNDING: European and Developing Countries Clinical Trials Partnership, UK Medical Research Council, Swedish International Development Cooperation Agency, Bundesministerium für Bildung und Forschung; German Center for Infection Research (DZIF).


Subject(s)
HIV Infections , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Child , Humans , Mycobacterium tuberculosis/genetics , Prospective Studies , Developing Countries , Tuberculosis, Pulmonary/drug therapy , Sensitivity and Specificity , Tuberculosis/diagnosis , South Africa , Sputum/microbiology
2.
Pediatr Infect Dis J ; 42(5): 353-360, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36854097

ABSTRACT

INTRODUCTION: An estimated 1.2 million children develop tuberculosis (TB) every year with 240,000 dying because of missed diagnosis. Existing tools suffer from lack of accuracy and are often unavailable. Here, we describe the scientific and clinical methodology applied in RaPaed-TB, a diagnostic accuracy study. METHODS: This prospective diagnostic accuracy study evaluating several candidate tests for TB was set out to recruit 1000 children <15 years with presumptive TB in 5 countries (Malawi, Mozambique, South Africa, Tanzania, India). Assessments at baseline included documentation of TB signs and symptoms, TB history, radiography, tuberculin skin test, HIV testing and spirometry. Respiratory samples for reference standard testing (culture, Xpert Ultra) included sputum (induced/spontaneous) or gastric aspirate, and nasopharyngeal aspirate (if <5 years). For novel tests, blood, urine and stool were collected. All participants were followed up at months 1 and 3, and month 6 if on TB treatment or unwell. The primary endpoint followed NIH-consensus statements on categorization of TB disease status for each participant. The study was approved by the sponsor's and all relevant local ethics committees. DISCUSSION: As a diagnostic accuracy study for a disease with an imperfect reference standard, Rapid and Accurate Diagnosis of Pediatric Tuberculosis Disease (RaPaed-TB) was designed following a rigorous and complex methodology. This allows for the determination of diagnostic accuracy of novel assays and combination of testing strategies for optimal care for children, including high-risk groups (ie, very young, malnourished, children living with HIV). Being one of the largest of its kind, RaPaed-TB will inform the development of improved diagnostic approaches to increase case detection in pediatric TB.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Child , Prospective Studies , Sensitivity and Specificity , Tuberculosis/diagnosis , Tuberculin Test , Feces , Sputum
3.
J Mol Diagn ; 25(1): 46-56, 2023 01.
Article in English | MEDLINE | ID: mdl-36243289

ABSTRACT

Four moderate-complexity automated nucleic acid amplification tests for the diagnosis of tuberculosis are reported as having laboratory analytical and clinical performance similar to that of the Cepheid Xpert MTB/RIF assay. These assays are the Abbott RealTime MTB and RealTime MTB RIF/INH Resistance, Becton Dickinson MAX MDR-TB, the Hain Lifescience/Bruker FluoroType MTBDR, and the Roche cobas MTB and MTB RIF/INH assays. The study compared feasibility, ease of use, and operational characteristics of these assays/platforms. Manufacturer input was obtained for technical characteristics. Laboratory operators were requested to complete a questionnaire on the assays' ease of use. A time-in-motion analysis was also undertaken for each platform. For ease-of-use and operational requirements, the BD MAX MDR-TB assay achieved the highest scores (86% and 90%) based on information provided by the user and manufacturer, respectively, followed by the cobas MTB and MTB-RIF/INH assay (68% and 86%), the FluoroType MTBDR assay (67% and 80%), and the Abbott RT-MTB and RT MTB RIF/INH assays (64% and 76%). The time-in-motion analysis revealed that for 94 specimens, the RealTime MTB assay required the longest processing time, followed by the cobas MTB assay and the FluoroType MTBDR assay. The BD MAX MDR-TB assay required 4.6 hours for 22 specimens. These diagnostic assays exhibited different strengths and weaknesses that should be taken into account, in addition to affordability, when considering placement of a new platform.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis, Pulmonary , Tuberculosis , Humans , Rifampin/pharmacology , Isoniazid/pharmacology , Mycobacterium tuberculosis/genetics , Tuberculosis, Pulmonary/diagnosis , Feasibility Studies , Sensitivity and Specificity , Tuberculosis/diagnosis , Nucleic Acid Amplification Techniques , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/drug therapy , World Health Organization
4.
J Clin Microbiol ; 60(9): e0055122, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36040150

ABSTRACT

The diagnosis of latent tuberculosis (TB) infection (LTBI) is critical to improve TB treatment and control, and the T-SPOT.TB test is a commercial enzyme-linked immunosorbent spot assay used for this purpose. The objective of the study was to increase automation and extend the time between blood collection and processing for the T-SPOT.TB test from 0 to 8 h to 0 to 54 h. The previous maximum time between blood collection and processing for the T-SPOT.TB test is 32 h using T-Cell Xtend. For this, we compared the T-SPOT.TB test using manual peripheral blood mononuclear cell (PBMC) isolation by density gradient separation at 0 to 8 h (reference method, control arm) to an automated PBMC isolation method using magnetic beads (T-Cell Select kit) at 0 to 55 h postcollection. A total of 620 subjects were enrolled from 4 study sites, and blood samples were collected from each volunteer, comprising 1,850 paired samples in total. Overall agreement between both methods was 96.8% (confidence interval [CI], 95.9 to 97.6%), with 95.8% (CI, 93.5 to 97.5%) positive and 97.1% negative agreement (CI, 96.1 to 97.9%). In summary, there was a strong overall agreement between the automated and manual T-SPOT.TB test processing methods. The results suggest that the T-SPOT.TB test can be processed using automated positive selection with magnetic beads using T-Cell Select to decrease hands-on time. Also, this cell isolation method allowed for the time between blood collection and processing to range from 0 to 55 h. Additional studies in larger and diverse patient populations including immunocompromised and pediatric patients are needed.


Subject(s)
Latent Tuberculosis , Leukocytes, Mononuclear , Automation , Cell Separation , Child , Enzyme-Linked Immunosorbent Assay , Humans , Immunosorbents , Interferon-gamma Release Tests , Latent Tuberculosis/diagnosis , T-Lymphocytes , Tuberculin Test
5.
Afr J Lab Med ; 11(1): 1476, 2022.
Article in English | MEDLINE | ID: mdl-35811751

ABSTRACT

Background: In low-resource settings, antimicrobial resistance (AMR) is detected by traditional culture-based methods and ensuring the quality of such services is a challenge. The AMR Scorecard provides laboratories with a technical assessment tool for strengthening the quality of bacterial culture, identification, and antimicrobial testing procedures. Objective: To evaluate the performance of the AMR Scorecard in 11 pilot laboratory evaluations in three countries also assessed with the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist. Methods: Pilot laboratory evaluations were conducted in Cameroon, Ethiopia and Kenya between February 2019 and March 2019. Assessors with previous SLIPTA and microbiology experience were trained. Assessors performed the laboratory assessments using the SLIPTA and AMR Scorecard tools. Results: Weaknesses in technical procedures and the quality management systems were identified in all areas and all laboratories. Safety had the highest mean performance score (SLIPTA: 68%; AMR Scorecard: 73%) while management review had the lowest (SLIPTA: 32%; AMR Scorecard: 8%) across all laboratories. The AMR Scorecard scores were generally consistent with SLIPTA scores. The AMR Scorecard identified technical weaknesses in AMR testing, and SLIPTA identified weaknesses in the quality management systems in the laboratories. Conclusion: Since the AMR Scorecard identified important gaps in AMR testing not detected by SLIPTA, it is recommended that microbiology laboratories use SLIPTA and the AMR Scorecard in parallel when preparing for accreditation. Expanding the use of the AMR Scorecard is a priority to address the need for quality clinical microbiology laboratory services in support of optimal patient care and AMR surveillance.

6.
Afr. j. lab. med. (Print) ; 11(1): 1-9, 2022. tables
Article in English | AIM (Africa) | ID: biblio-1379028

ABSTRACT

Background: In low-resource settings, antimicrobial resistance (AMR) is detected by traditional culture-based methods and ensuring the quality of such services is a challenge. The AMR Scorecard provides laboratories with a technical assessment tool for strengthening the quality of bacterial culture, identification, and antimicrobial testing procedures. Objective: To evaluate the performance of the AMR Scorecard in 11 pilot laboratory evaluations in three countries also assessed with the Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist.Methods: Pilot laboratory evaluations were conducted in Cameroon, Ethiopia and Kenya between February 2019 and March 2019. Assessors with previous SLIPTA and microbiology experience were trained. Assessors performed the laboratory assessments using the SLIPTA and AMR Scorecard tools.Results: Weaknesses in technical procedures and the quality management systems were identified in all areas and all laboratories. Safety had the highest mean performance score (SLIPTA: 68%; AMR Scorecard: 73%) while management review had the lowest (SLIPTA: 32%; AMR Scorecard: 8%) across all laboratories. The AMR Scorecard scores were generally consistent with SLIPTA scores. The AMR Scorecard identified technical weaknesses in AMR testing, and SLIPTA identified weaknesses in the quality management systems in the laboratories.Conclusion: Since the AMR Scorecard identified important gaps in AMR testing not detected by SLIPTA, it is recommended that microbiology laboratories use SLIPTA and the AMR Scorecard in parallel when preparing for accreditation. Expanding the use of the AMR Scorecard is a priority to address the need for quality clinical microbiology laboratory services in support of optimal patient care and AMR surveillance.


Subject(s)
Drug Resistance, Microbial , Urine , Blood Cells , Clinical Competence , Laboratories
7.
J Clin Microbiol ; 59(3)2021 02 18.
Article in English | MEDLINE | ID: mdl-33268535

ABSTRACT

Failure to rapidly identify drug-resistant tuberculosis (TB) increases the risk of patient mismanagement, the amplification of drug resistance, and ongoing transmission. We generated comparative analytical data for four automated assays for the detection of TB and multidrug-resistant TB (MDR-TB): Abbott RealTime MTB and MTB RIF/INH (Abbott), Hain Lifescience FluoroType MTBDR (Hain), BD Max MDR-TB (BD), and Roche cobas MTB and MTB-RIF/INH (Roche). We included Xpert MTB/RIF (Xpert) and GenoType MTBDRplus as comparators for TB and drug resistance detection, respectively. We assessed analytical sensitivity for the detection of the Mycobacterium tuberculosis complex using inactivated strains (M. tuberculosis H37Rv and M. bovis) spiked into TB-negative sputa and computed the 95% limits of detection (LOD95). We assessed the accuracy of rifampicin and isoniazid resistance detection using well-characterized M. tuberculosis strains with high-confidence mutations accounting for >85% of first-line resistance mechanisms globally. For H37Rv and M. bovis, we measured LOD95 values of 3,781 and 2,926 (Xpert), 322 and 2,182 (Abbott), 826 and 4,301 (BD), 10,398 and 23,139 (Hain), and 2,416 and 2,136 (Roche) genomes/ml, respectively. Assays targeting multicopy genes or targets (Abbott, BD, and Roche) showed increased analytical sensitivity compared to Xpert. Quantification of the panel by quantitative real-time PCR prevents the determination of absolute values, and results reported here can be interpreted for comparison purposes only. All assays showed accuracy comparable to that of Genotype MTBDRplus for the detection of rifampicin and isoniazid resistance. The data from this analytical study suggest that the assays may have clinical performances similar to those of WHO-recommended molecular TB and MDR-TB assays.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/genetics , Rifampin/pharmacology , Sensitivity and Specificity , Tuberculosis, Multidrug-Resistant/diagnosis
8.
PLoS One ; 15(2): e0228669, 2020.
Article in English | MEDLINE | ID: mdl-32074142

ABSTRACT

Implementing new diagnostics in public health programs can involve difficult trade-off decisions between individual patient benefits and public health considerations. Such decision-making processes are often not documented and may not include engagement of affected communities. This paper examines the perspectives of stakeholders on the trade-off between over-treatment and missed diagnosis captured during decision-making workshops on the transition from use of Xpert MTB/RIF to diagnose tuberculosis to Xpert MTB/RIF Ultra in Kenya and Swaziland. Xpert MTB/RIF Ultra has an overall increase in sensitivity but a decrease in specificity when compared to its predecessor. We conducted a qualitative study using four focus group discussions with a total of 47 participants and non-participant observation. The analysis reveals how participants deemed Xpert MTB/RIF Ultra's reduced specificity vis-à-vis its increased sensitivity to be an acceptable trade-off. The way participants assessed this trade-off was shaped by their experiences with the general uncertainty of all diagnostic tests, alternative testing options, historical evolution of diagnostic practices, epidemiological factors and resource constraints. In assessing the trade-off community and individual benefit and harm was frequently discussed together. Qualitative research on stakeholder engagement activities for diagnostic development and implementation can identify everyday experiences and situate assessments and perspectives of key stakeholders and as such aid in decision-making, improving implementation as well as patient outcomes. Further research is needed on the intended and unintended consequences of such engagement activities, how findings are being incorporated by decision-makers, and the impact on programmatic implementation.


Subject(s)
Attitude , Medical Overuse , Missed Diagnosis/psychology , Reagent Kits, Diagnostic/standards , Tuberculosis/diagnosis , Eswatini , Focus Groups , Humans , Kenya , Molecular Diagnostic Techniques/standards , Sensitivity and Specificity , Stakeholder Participation
9.
Clin Infect Dis ; 71(8): 1973-1976, 2020 11 05.
Article in English | MEDLINE | ID: mdl-31917832

ABSTRACT

Reducing diagnostic delay is key toward decreasing tuberculosis-associated deaths in people living with human immunodeficiency virus. In tuberculosis patients with retrospective urine testing, the point-of-care Fujifilm SILVAMP TB LAM (FujiLAM) could have rapidly diagnosed tuberculosis in up to 89% who died. In FujiLAM negative patients, the probability of 12-week survival was 86-97%.


Subject(s)
HIV Infections , Tuberculosis , Delayed Diagnosis , HIV , HIV Infections/complications , Humans , Lipopolysaccharides , Retrospective Studies , Sensitivity and Specificity , South Africa/epidemiology , Tuberculosis/diagnosis
11.
Lancet Infect Dis ; 19(8): 852-861, 2019 08.
Article in English | MEDLINE | ID: mdl-31155318

ABSTRACT

BACKGROUND: Most tuberculosis-related deaths in people with HIV could be prevented with earlier diagnosis and treatment. The only commercially available tuberculosis point-of-care test (Alere Determine TB LAM Ag [AlereLAM]) has suboptimal sensitivity, which restricts its use in clinical practice. The novel Fujifilm SILVAMP TB LAM (FujiLAM) assay has been developed to improve the sensitivity of AlereLAM. We assessed the diagnostic accuracy of the FujiLAM assay for the detection of tuberculosis in hospital inpatients with HIV compared with the AlereLAM assay. METHODS: For this diagnostic accuracy study, we assessed biobanked urine samples obtained from the FIND Specimen Bank and the University of Cape Town Biobank, which had been collected from hospital inpatients (aged ≥18 years) with HIV during three independent prospective cohort studies done at two South African hospitals. Urine samples were tested using FujiLAM and AlereLAM assays. The conduct and reporting of each test was done blind to other test results. The primary objective was to assess the diagnostic accuracy of FujiLAM compared with AlereLAM, against microbiological and composite reference standards (including clinical diagnoses). FINDINGS: Between April 18, 2018, and May 3, 2018, urine samples from 968 hospital inpatients with HIV were evaluated. The prevalence of microbiologically-confirmed tuberculosis was 62% and the median CD4 count was 86 cells per µL. Using the microbiological reference standard, the estimated sensitivity of FujiLAM was 70·4% (95% CI 53·0 to 83·1) compared with 42·3% (31·7 to 51·8) for AlereLAM (difference 28·1%) and the estimated specificity of FujiLAM was 90·8% (86·0 to 94·4) and 95·0% (87·7-98·8) for AlereLAM (difference -4·2%). Against the composite reference standard, the specificity of both assays was higher (95·7% [92·0 to 98·0] for FujiLAM vs 98·2% [95·7 to 99·6] for AlereLAM; difference -2·5%), but the sensitivity of both assays was lower (64·9% [50·1 to 76·7] for FujiLAM vs 38·2% [28·1 to 47·3] for AlereLAM; difference 26·7%). INTERPRETATION: In comparison to AlereLAM, FujiLAM offers superior diagnostic sensitivity, while maintaining specificity, and could transform rapid point-of-care tuberculosis diagnosis for hospital inpatients with HIV. The applicability of FujiLAM for settings of intended use requires prospective assessment. FUNDING: Global Health Innovative Technology Fund, UK Department for International Development, Dutch Ministry of Foreign Affairs, Bill & Melinda Gates Foundation, German Federal Ministry of Education and Research, Australian Department of Foreign Affairs and Trade, Wellcome Trust, Department of Science and Technology and National Research Foundation of South Africa, and South African Medical Research Council.


Subject(s)
Antigens, Bacterial/urine , HIV Infections/complications , Lipopolysaccharides , Point-of-Care Testing , Tuberculosis , Adult , CD4 Lymphocyte Count , Female , Hospitals , Humans , Male , Prevalence , Prospective Studies , Sensitivity and Specificity , South Africa/epidemiology , Tuberculosis/diagnosis , Tuberculosis/epidemiology
12.
BMC Infect Dis ; 18(1): 102, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29499645

ABSTRACT

BACKGROUND: Growth-based drug susceptibility testing (DST) is the reference standard for diagnosing drug-resistant tuberculosis (TB), but standard time to result (TTR) is typically ≥ 3 weeks. Rapid tests can reduce that TTR to days or hours, but accuracy may be lowered. In addition to the TTR and test accuracy, the cost of a diagnostic test may affect whether it is adopted in clinical settings. We examine the cost-effectiveness of rapid diagnostics for extremely drug-resistant TB (XDR-TB) in three different high-prevalence settings. METHODS: 1128 patients with confirmed TB were enrolled at clinics in Mumbai, India; Chisinau, Moldova; and Port Elizabeth, South Africa. Patient sputum samples underwent DST for first and second line TB drugs using 2 growth-based (MGIT, MODS) and 2 molecular (Pyrosequencing [PSQ], line-probe assays [LPA]) assays. TTR was the primary measure of effectiveness. Sensitivity and specificity were also evaluated. The cost to perform each test at each site was recorded and included test-specific materials, personnel, and equipment costs. Incremental cost-effectiveness ratios were calculated in terms of $/day saved. Sensitivity analyses examine the impact of batch size, equipment, and personnel costs. RESULTS: Our prior results indicated that the LPA and PSQ returned results in a little over 1 day. Mean cost per sample without equipment or overhead was $23, $28, $33, and $41 for the MODS, MGIT, PSQ, and LPA, respectively. For diagnosing XDR-TB, MODS was the most accurate, followed by PSQ, and LPA. MODS was quicker and less costly than MGIT. PSQ and LPA were considerably faster but cost more than MODS. Batch size and personnel costs were the main drivers of cost variation. CONCLUSIONS: Multiple factors must be weighed when selecting a test for diagnosis of XDR-TB. Rapid tests can greatly improve the time required to diagnose drug-resistant TB, potentially improving treatment success, and preventing the spread of XDR-TB. Faster time to result must be weighed against the potential for reduced accuracy, and increased costs. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02170441 .


Subject(s)
Drug Resistance, Multiple, Bacterial/drug effects , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/economics , Health Care Costs , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Humans , India , Microbial Sensitivity Tests/economics , Moldova , Sensitivity and Specificity , South Africa
13.
Afr J Lab Med ; 6(2): 576, 2017.
Article in English | MEDLINE | ID: mdl-28879165

ABSTRACT

BACKGROUND: Quality-assured tuberculosis laboratory services are critical to achieve global and national goals for tuberculosis prevention and care. Implementation of a quality management system (QMS) in laboratories leads to improved quality of diagnostic tests and better patient care. The Strengthening Laboratory Management Toward Accreditation (SLMTA) programme has led to measurable improvements in the QMS of clinical laboratories. However, progress in tuberculosis laboratories has been slower, which may be attributed to the need for a structured tuberculosis-specific approach to implementing QMS. We describe the development and early implementation of the Strengthening Tuberculosis Laboratory Management Toward Accreditation (TB SLMTA) programme. DEVELOPMENT: The TB SLMTA curriculum was developed by customizing the SLMTA curriculum to include specific tools, job aids and supplementary materials specific to the tuberculosis laboratory. The TB SLMTA Harmonized Checklist was developed from the World Health Organisation Regional Office for Africa Stepwise Laboratory Quality Improvement Process Towards Accreditation checklist, and incorporated tuberculosis-specific requirements from the Global Laboratory Initiative Stepwise Process Towards Tuberculosis Laboratory Accreditation online tool. IMPLEMENTATION: Four regional training-of-trainers workshops have been conducted since 2013. The TB SLMTA programme has been rolled out in 37 tuberculosis laboratories in 10 countries using the Workshop approach in 32 laboratories in five countries and the Facility-based approach in five tuberculosis laboratories in five countries. CONCLUSION: Lessons learnt from early implementation of TB SLMTA suggest that a structured training and mentoring programme can build a foundation towards further quality improvement in tuberculosis laboratories. Structured mentoring, and institutionalisation of QMS into country programmes, is needed to support tuberculosis laboratories to achieve accreditation.

15.
PLoS One ; 10(8): e0136861, 2015.
Article in English | MEDLINE | ID: mdl-26322781

ABSTRACT

BACKGROUND: The aim of this study was to compare the performance of several recently developed assays for the detection of multi- and extensively drug-resistant tuberculosis (M/XDR-TB) in a large, multinational field trial. METHODS: Samples from 1,128 M/XDR-TB suspects were examined by Line Probe Assay (LPA), Pyrosequencing (PSQ), and Microscopic Observation of Drug Susceptibility (MODS) and compared to the BACTEC MGIT960 reference standard to detect M/XDR-TB directly from patient sputum samples collected at TB clinics in India, Moldova, and South Africa. RESULTS: Specificity for all three assays was excellent: 97-100% for isoniazid (INH), rifampin (RIF), moxifloxacin (MOX) and ofloxacin (OFX) and 99-100% for amikacin (AMK), capreomycin (CAP) and kanamycin (KAN) resistance. Sensitivities were lower, but still very good: 94-100% for INH, RIF, MOX and OFX, and 84-90% for AMK and CAP, but only 48-62% for KAN. In terms of agreement, statistically significant differences were only found for detection of RIF (MODS outperformed PSQ) and KAN (MODS outperformed LPA and PSQ) resistance. Mean time-to-result was 1.1 days for LPA and PSQ, 14.3 days for MODS, and 24.7 days for MGIT. CONCLUSIONS: All three rapid assays evaluated provide clinicians with timely detection of resistance to the drugs tested; with molecular results available one day following laboratory receipt of samples. In particular, the very high specificity seen for detection of drug resistance means that clinicians can use the results of these rapid tests to avoid the use of toxic drugs to which the infecting organism is resistant and develop treatment regiments that have a higher likelihood of yielding a successful outcome.


Subject(s)
Extensively Drug-Resistant Tuberculosis/diagnosis , Tuberculosis, Multidrug-Resistant/diagnosis , Adolescent , Adult , Aged , Antitubercular Agents/therapeutic use , Child , Drug Resistance, Multiple, Bacterial/drug effects , Extensively Drug-Resistant Tuberculosis/drug therapy , Female , Humans , India , Male , Microbial Sensitivity Tests , Middle Aged , Moldova , Mycobacterium tuberculosis/drug effects , Prospective Studies , Sensitivity and Specificity , South Africa , Tuberculosis, Multidrug-Resistant/drug therapy , Young Adult
16.
Trials ; 15: 434, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25377177

ABSTRACT

BACKGROUND: Drug-resistant tuberculosis (DR-TB) remains a threat to global public health, owing to the complexity and delay of diagnosis and treatment. The Global Consortium for Drug-resistant Tuberculosis Diagnostics (GCDD) was formed to develop and evaluate assays designed to rapidly detect DR-TB, so that appropriate treatment might begin more quickly. This paper describes the methodology employed in a prospective cohort study for head-to-head assessment of three different rapid diagnostic tools. METHODS: Subjects at risk of DR-TB were enrolled from three countries. Data were gathered from a combination of patient interviews, chart reviews, and laboratory testing from each site's reference laboratory. The primary outcome of interest was reduction in time from specimen arrival in the laboratory to results of rapid drug susceptibility tests, as compared with current standard mycobacterial growth indicator tube (MGIT) drug susceptibility tests. RESULTS: Successful implementation of the trial in diverse multinational populations is explained, in addition to challenges encountered and recommendations for future studies with similar aims or populations. CONCLUSIONS: The GCDD study was a head-to-head study of multiple rapid diagnostic assays aimed at improving accuracy and precision of diagnostics and reducing overall time to detection of DR-TB. By conducting a large prospective study, which captured epidemiological, clinical, and biological data, we have produced a high-quality unique dataset, which will be beneficial for analyzing study aims as well as answering future DR-TB research questions. Reduction in detection time for XDR-TB would be a major public health success as it would allow for improved treatment and more successful patient outcomes. Executing successful trials is critical in assessment of these reductions in highly variable populations. TRIAL REGISTRATION: ClinicalTrials.gov NCT02170441.


Subject(s)
DNA, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Extensively Drug-Resistant Tuberculosis/diagnosis , Molecular Diagnostic Techniques , Mycobacterium tuberculosis/genetics , Research Design , Tuberculosis, Pulmonary/diagnosis , Clinical Protocols , Cost-Benefit Analysis , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/economics , Extensively Drug-Resistant Tuberculosis/microbiology , Genotype , Health Care Costs , Humans , India , Microbial Sensitivity Tests , Moldova , Molecular Diagnostic Techniques/economics , Mycobacterium tuberculosis/drug effects , Phenotype , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , South Africa , Sputum/microbiology , Time Factors , Time-to-Treatment , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology
17.
PLoS One ; 8(8): e70919, 2013.
Article in English | MEDLINE | ID: mdl-24058399

ABSTRACT

BACKGROUND: South Africa shows one of the highest global burdens of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB). Since 2002, MDR-TB in South Africa has been treated by a standardized combination therapy, which until 2010 included ofloxacin, kanamycin, ethionamide, ethambutol and pyrazinamide. Since 2010, ethambutol has been replaced by cycloserine or terizidone. The effect of standardized treatment on the acquisition of XDR-TB is not currently known. METHODS: We genetically characterized a random sample of 4,667 patient isolates of drug-sensitive, MDR and XDR-TB cases collected from three South African provinces, namely, the Western Cape, Eastern Cape and KwaZulu-Natal. Drug resistance patterns of a subset of isolates were analyzed for the presence of commonly observed resistance mutations. RESULTS: Our analyses revealed a strong association between distinct strain genotypes and the emergence of XDR-TB in three neighbouring provinces of South Africa. Strains predominant in XDR-TB increased in proportion by more than 20-fold from drug-sensitive to XDR-TB and accounted for up to 95% of the XDR-TB cases. A high degree of clustering for drug resistance mutation patterns was detected. For example, the largest cluster of XDR-TB associated strains in the Eastern Cape, affecting more than 40% of all MDR patients in this province, harboured identical mutations concurrently conferring resistance to isoniazid, rifampicin, pyrazinamide, ethambutol, streptomycin, ethionamide, kanamycin, amikacin and capreomycin. CONCLUSIONS: XDR-TB associated genotypes in South Africa probably were programmatically selected as a result of the standard treatment regimen being ineffective in preventing their transmission. Our findings call for an immediate adaptation of standard treatment regimens for M/XDR-TB in South Africa.


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Multiple , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Antitubercular Agents/therapeutic use , Extensively Drug-Resistant Tuberculosis/epidemiology , Genotype , Humans , Mycobacterium tuberculosis/isolation & purification , South Africa/epidemiology
18.
Emerg Infect Dis ; 19(3): 449-55, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23622714

ABSTRACT

Factors driving the increase in drug-resistant tuberculosis (TB) in the Eastern Cape Province, South Africa, are not understood. A convenience sample of 309 drug-susceptible and 342 multidrug-resistant (MDR) TB isolates, collected July 2008-July 2009, were characterized by spoligotyping, DNA fingerprinting, insertion site mapping, and targeted DNA sequencing. Analysis of molecular-based data showed diverse genetic backgrounds among drug-sensitive and MDR TB sensu stricto isolates in contrast to restricted genetic backgrounds among pre-extensively drug-resistant (pre-XDR) TB and XDR TB isolates. Second-line drug resistance was significantly associated with the atypical Beijing genotype. DNA fingerprinting and sequencing demonstrated that the pre-XDR and XDR atypical Beijing isolates evolved from a common progenitor; 85% and 92%, respectively, were clustered, indicating transmission. Ninety-three percent of atypical XDR Beijing isolates had mutations that confer resistance to 10 anti-TB drugs, and some isolates also were resistant to para-aminosalicylic acid. These findings suggest the emergence of totally drug-resistant TB.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Extensively Drug-Resistant Tuberculosis/epidemiology , Mycobacterium tuberculosis/drug effects , Tuberculosis, Pulmonary/epidemiology , Antitubercular Agents/pharmacology , Bacterial Proteins/genetics , Catalase/genetics , Cluster Analysis , Communicable Diseases, Emerging/drug therapy , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/microbiology , Genotype , Humans , Microbial Sensitivity Tests , Mutation, Missense , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , South Africa/epidemiology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/microbiology
19.
Infect Genet Evol ; 12(4): 686-94, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21839855

ABSTRACT

Drug resistant tuberculosis (TB) has reached alarming proportions in South Africa, draining valuable resources that are needed to fight drug susceptible TB. It is currently estimated that 9.6% of all TB cases have multi-drug resistant (MDR)-TB, thereby ranking South Africa as one of the highest MDR-TB burden countries in the world. Molecular epidemiological studies have demonstrated the complexity of the epidemic and have clearly shown that the epidemic is driven by transmission as a consequence of low cases detection and diagnostic delay. The latter has in turn fueled the amplification of drug resistance, ultimately leading to the emergence of extensively drug resistant (XDR)-TB. Despite the introduction of new drugs to combat this scourge, culture conversion rates for XDR-TB remain below 20%. Failure to achieve cure may be explained from DNA sequencing results which have demonstrated mutations in 7 genes encoding resistance to at least 8 anti-TB drugs. This review shows how molecular epidemiology has provided novel insights into the MDR-TB epidemic in South Africa and thereby has highlighted the challenges that need to be addressed regarding the diagnosis and treatment of MDR-TB. An important step towards for curbing this epidemic will be collaboration between clinicians, laboratories and researchers to establish scientific knowledge and medical expertise to more efficiently guide public health policy.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/pharmacology , Delayed Diagnosis , Extensively Drug-Resistant Tuberculosis/diagnosis , Extensively Drug-Resistant Tuberculosis/drug therapy , Extensively Drug-Resistant Tuberculosis/epidemiology , Genotype , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Phylogeography , Practice Guidelines as Topic , South Africa/epidemiology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/epidemiology
20.
Microb Drug Resist ; 18(2): 193-7, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21732736

ABSTRACT

The aminoglycosides amikacin (AMK)/kanamycin (KAN) and the cyclic polypeptide capreomycin (CAP) are important injectable drugs in the treatment of multidrug-resistant tuberculosis. Cross-resistance among these drug classes occurs and information on the minimum inhibitory concentrations (MICs), above the normal wild-type distribution, may be useful in identifying isolates that are still accessible to drug treatment. Isolates from the Eastern Cape Province of South Africa were subjected to DNA sequencing of the rrs (1400-1500 region) and tlyA genes. Sequencing data were compared with (i) conventional susceptibility testing at standard critical concentrations (CCs) on Middlebrook 7H11 agar and (ii) MGIT 960-based MIC determinations to assess the presence of AMK- and CAP-resistant mutants. Isolates with an rrs A1401G mutation showed high-level resistance to AMK (>20 mg/L) and decreased phenotypic susceptibility to CAP (MICs 10-15 mg/L). The MICs of CAP were below the bioavailability of the drug, which suggests that it may still be effective against multi- or extensively drug resistant tuberculosis [M(X)DR-TB]. Agar-based CC testing was found to be unreliable for resistance recognition of CAP in particular.


Subject(s)
Amikacin/pharmacology , Antitubercular Agents/pharmacology , Capreomycin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Mycobacterium tuberculosis/drug effects , RNA, Ribosomal, 16S/genetics , Bacterial Proteins/genetics , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/isolation & purification , Phenotype , Polymerase Chain Reaction , Sequence Analysis, DNA , South Africa , Tuberculosis, Multidrug-Resistant/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...